Spatial Disorder Of Coupled Discrete Nonlinear Schrödinger Equations
نویسنده
چکیده
In this paper, we study the spatial disorder of coupled discrete nonlinear Schrödinger (CDNLS) equations with piecewise-monotone nonlinearities. By the construction of horseshoes, we show that the CDNLS equation possesses a hyperbolic invariant Cantor set on which it is topological conjugate to the full shift on N symbols. The CDNLS equation exhibits spatial disorder, resulting from the strong amplitudes and stiffness of the nonlinearities in the system. The complexity of the disorder is determined by the oscillations of the nonlinearities.
منابع مشابه
Spatial Disorder of Soliton Solutions for 2D Nonlinear Schrödinger Lattices
In this paper, we employ the construction of topological horseshoes to study the pattern of the soliton solutions to the discrete nonlinear Schrödinger (DNLS) equations in a twodimensional lattice. The spatial disorder of the DNLS equations is the result of the strong amplitudes and stiffness of the nonlinearities. The complexity of this disorder is determined by the oscillations (number of tur...
متن کاملCoupled Nonlinear Schrödinger equation and Toda equation (the Root of Integrability)
We consider the relation between the discrete coupled nonlinear Schrödinger equation and Toda equation. Introducing complex times we can show the intergability of the discrete coupled nonlinear Schrödinger equation. In the same way we can show the integrability in coupled case of dark and bright equations. Using this method we obtain several integrable equations.
متن کاملIntegrable Discretization of the Coupled Nonlinear Schrödinger Equations
A discrete version of the inverse scattering method proposed by Ablowitz and Ladik is generalized to study an integrable full-discretization (discrete time and discrete space) of the coupled nonlinear Schrödinger equations. The generalization enables one to solve the initial-value problem. Soliton solutions and conserved quantities of the full-discrete system are constructed.
متن کاملIntegrable semi-discretization of the coupled nonlinear Schrödinger equations
A system of semi-discrete coupled nonlinear Schrödinger equations is studied. To show the complete integrability of the model with multiple components, we extend the discrete version of the inverse scattering method for the single-component discrete nonlinear Schrödinger equation proposed by Ablowitz and Ladik. By means of the extension, the initial-value problem of the model is solved. Further...
متن کاملExperimental Results Related to Discrete Nonlinear Schrödinger Equations
Discrete nonlinear Schrödinger (DNLS) equations can be used to model numerous phenomena in atomic, molecular, and optical physics. The general feature of these various settings that leads to the relevance of DNLS models is a competition between nonlinearity, dispersion, and spatial discreteness (which can be periodic, quasiperiodic, or random). In three-dimensions (3D), the DNLS with cubic nonl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009